Problem 26192 --Prim or Kruskal

26192: Prim or Kruskal

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 35  Solved: 12
[Submit][Status][Web Board][Creator:][下载FPS1元][添加到购物车][下载测试数据1元][20kb]

Description

      最小生成树问题是实际生产生活中十分重要的一类问题。假设需要在n个城市之间建立通信联络网,则连通n个城市只需要n-1条线路。这时,自然需要考虑这样一个问题,即如何在最节省经费的前提下建立这个通信网。
      可以用连通网来表示n个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋于边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。现在,需要选择一棵生成树,使总的耗费最小。这个问题就是构造连通网的最小代价生成树,简称最小生成树。一棵生成树的代价就是树上各边的代价之和。

Input

输入的第一行包含一个正整数n,表示图中共有n个顶点。其中n不超过50。
以后的n行中每行有n个用空格隔开的整数,对于第i行的第j个整数,如果不为0,则表示第i个顶点和第j个顶点有直接连接且代价为相应的值,0表示没有直接连接。当i和j相等的时候,保证对应的整数为0。
输入保证邻接矩阵为对称矩阵,即输入的图一定是无向图,且保证图中只有一个连通分量。

Output

只有一个整数,即最小生成树的总代价。请注意行尾输出换行。

Sample Input

4
0 2 4 0
2 0 3 5
4 3 0 1
0 5 1 0

Sample Output

6

HINT

Source

[Submit][Status]