问题 1760 --算法6-12:自底向上的赫夫曼编码

1760: 算法6-12:自底向上的赫夫曼编码

时间限制: 1 Sec  内存限制: 32 MB
提交: 154  解决: 53
[提交][状态][讨论版][数据上传:][下载FPS1元][下载测试数据1元][20kb]

题目描述

在通讯领域,经常需要将需要传送的文字转换成由二进制字符组成的字符串。在实际应用中,由于总是希望被传送的内容总长尽可能的短,如果对每个字符设计长度不等的编码,且让内容中出现次数较多的字符采用尽可能短的编码,则整个内容的总长便可以减少。另外,需要保证任何一个字符的编码都不是另一个字符的编码前缀,这种编码成为前缀编码。
而赫夫曼编码就是一种二进制前缀编码,其从叶子到根(自底向上)逆向求出每个字符的算法可以表示如下:
在本题中,读入n个字符所对应的权值,生成赫夫曼编码,并依次输出计算出的每一个赫夫曼编码。

输入

输入的第一行包含一个正整数n,表示共有n个字符需要编码。其中n不超过100。
第二行中有n个用空格隔开的正整数,分别表示n个字符的权值。

输出

共n行,每行一个字符串,表示对应字符的赫夫曼编码。

样例输入

8
5 29 7 8 14 23 3 11

样例输出

0110
10
1110
1111
110
00
0111
010

提示

赫夫曼树又名最优二叉树,它是一类带权路径长度最小的二叉树。通过构造赫夫曼树,我们可以得到赫夫曼编码,从而使得通信能够得到更高的效率。在本题中,构造赫夫曼树的过程使用了从叶子到根的逆向顺序,另外,还有一种从根出发直到叶子的赫夫曼编码构造算法,这将在下一题中进行讨论。

来源

[提交][状态]